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Abstract. In the present work we propose a new bag model for hadrons, called the modified fuzzy bag
model (MFBM). The distinguishing feature of this model is the suppression of the pion field, as it enters
the bag, by means of a scalar potential for the pions, while still preserving chiral symmetry. The mechanism
of pion suppression in the MFBM is similar to the mechanism of quark suppression in the fuzzy bag model
(FBM). The standard chiral transformation for the pion field suffers a natural alteration in the MFBM,
and as a result the model is chiral invariant. We present also a discussion of the FBM and study, in the
quark sector, the implications of the soft surface of the bag on the expectation value of the mass operator.
In the pion-quark sector, we study the effects of the suppression of the pion field on the form factor for the
pion-nucleon interaction, on the pion-nucleon coupling constant gπNN and on the nucleon axial charge gA.
Calculations of the pion-nucleon form factor exhibit, in particular, an improvement over previous results.
The pionic axial current induces, in the MFBM, a nonvanishing and orientation dependent contribution
to axial charge. An analysis of the asymptotic behaviour of the axial charge shows that the role of the
surface is to increase the difference of the contributions associated to different orientations.

1 Introduction

The highly nonlinear form and complexity of Quantum
Chromodynamics (QCD) has motivated phenomenologi-
cal models, which incorporate basic properties of QCD, to
address problems of intermediate and low energy hadron
physics. Most prominent among these models are different
versions of the MIT bag model [1–5]. In these models, rel-
ativistic quarks are confined within a sharp surface, which
represents a boundary between two different media — a
perturbative vacuum inside the bag, and a nonperturba-
tive vacuum outside the bag.

By coupling pions to quarks at the bag surface, bag
models which preserve chiral symmetry can be constructed
[6,7]. The pion is then regarded as an elementary field
rather than a bag state. Two main versions of chiral bag
models exist [8]: one where the pion is excluded from the
bag’s interior, and another where the pion can freely pene-
trate the bag, the latter being called the cloudy bag model
[6].

With the inclusion of a pion field, the hadrons get
dressed and their physical properties are changed. The
corrections were thought to be finite and small, but they
are infinite. As was demonstrated [9–11], the nucleon self-
energy diverges in the MIT bag model when quarks are
coupled to a pion field. This result does not depend on the
form of the coupling and also does not depend on whether
the pion field penetrates in or is excluded from the bag’s

interior. It is rather the sharp surface of the MIT bag, by
allowing the creation of virtual pions with arbitrarily high
momenta, which causes the divergence of the self-energy
of the nucleon.

One way to solve this difficulty was proposed by
Nogami et al. [11,12] and is called the fuzzy bag model
(FBM). In this model, the surface of the bag is “fuzzy”:
it has a finite thickness. This is accomplished by the in-
troduction of a volume- and a surface-filter distribution
function. In the FBM, the parametrization of the bound-
ary between the inside and the outside of the bag is more
natural, being a smooth transition. In the chiral version of
the model, a pion field which couples to quarks in the sur-
face is introduced. It would then be desirable to keep the
pion field away from the interior of the bag. This would
maintain the interpretation that inside region of the bag
is the perturbative vacuum of QCD, since there the chiral
symmetry is realized in the Wigner mode and therefore
the pions do not exist. The only mechanism known in the
literature of preventing the pion field to penetrate into
the bag is the multiplication of the whole pion field La-
grangian density by θ(r−R). This cannot be done in the
FBM, because the surface is not sharp: it has no definite
value for the radius.

In this paper, we introduce a modified version of the
FBM, called the modified fuzzy bag model (MFBM), in
which the pion field is allowed to propagate freely in the
exterior of the bag, is suppressed in a smooth manner in
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the surface of the bag, and vanishes in the interior of the
bag. By these means we can keep both the interpretation
that inside region of the bag is the perturbative vacuum
of QCD and also the finiteness of the self-energy of the
nucleon. The suppression of the pion field in the MFBM
is accomplished by means of a scalar potential for the pion
field, but the model is still chiral invariant. By introduc-
ing such a mechanism, the πNN coupling constant, which
tends to be underestimated in the cloudy bag model [6]
and is even smaller in the FBM, is higher in the MFBM.

Here we also review the FBM and present different ver-
sions for the volume- and surface-filter distribution func-
tions, which characterize the sharpness of bag surface. In
particular, our version of the surface-filter function peaks
at the surface of the bag, denoted by R, while in the FBM
it peaks at R + 1fm. So, our surface parametrization re-
covers the MIT bag model in the limit of a sharp surface,
while the parametrization in [12] does not.

We organize our material as follows. In chapter two we
review the fuzzy bag model. In Sect. 2.1 we present the
basic formalism. In Sect. 2.2 we show that the original [12]
parametrizations of the volume- and surface-filter function
do not suppress the quark field appropriately in the inte-
rior of the bag, and in Sect. 2.3 we propose new forms of
these functions, so that they recover the MIT bag model in
the limit of a sharp surface. In Sect. 2.4 we solve the FBM
with our parametrization for the volume- and surface-filter
functions and assuming the bag constant B equal to zero.
The results are applied in Sect. 2.4.1 in the calculation of
the axial form factor of the nucleon. In Sect. 2.5 we study
the FBM assuming B 6= 0. In chapter three we introduce
the modified fuzzy bag model (MFBM). In Sect. 3.1 we
discuss various aspects involving the inclusion or exclu-
sion of pions inside the bag. In Sect. 3.2 we introduce and
discuss the formalism of the model. In Sect. 3.3 we define
an appropriate suppression function for the pions inside
the bag and we determine the wavefunctions of the pion.
In Sect. 3.4 we study the effects of the suppression of the
pion field on the form factor for the pion-nucleon inter-
action, on the pion-nucleon coupling constant gπNN and,
in Sect. 3.5, on the nucleon axial charge gA. Finally, in
chapter four we present some conclusions.

2 The Fuzzy Bag Model

2.1 Lagrangian of the FBM

In order to cure the divergence of the nucleon self-energy
in the MIT bag model, Nogami and co-workers [11,12]
proposed a model in which the surface of the bag is not
sharply defined, the fuzzy bag model (FBM). The main
idea of this model is to replace the step function θ(R− r)
and the delta function δ(R−r) in the MIT-Lagrangian by
continuous functions F (r) and G(r),

L=
[ i
2
(qγµ∂µq−∂µqγ

µq)−mqqq−B
]
F (r)− 1

2
qq G(r)(1)

As will be seen later, the field q(x) is related to the physical
quark field, but is not identical to it. The functions F (r)

and G(r) depend on a parameter n, such that

F (r) −→
n→∞ θ(R− r) ,

G(r) −→
n→∞ δ(R− r) , (2)

and thus F (r) and G(r) are representations of the distri-
butions θ(R − r) and δ(R − r). Just like ∂rθ(R − r) =
−δ(R− r), we demand

dF (r)
dr

= −G(r) . (3)

For a given a supression function F (r), relation (3) fixes
the corresponding G(r). The Euler-Lagrange equations
applied to (1) give

iγµ(∂µq)F +
i

2
γµ(∂µF ) q −mq F q − 1

2
Gq = 0 . (4)

With help of the vector nµ = (0,−r̂), relation (3) can be
written as ∂µF (r) = nµG(r) and then (4) yields

iγµ∂µq + [inµγ
µ Vc(r) −mq − Vc(r)] q = 0 , (5)

where Vc(r) is

Vc(r) =
G(r)
2F (r)

= −1
2
d

dr
ln(F (r)) . (6)

It was shown [12], that the solutions of (5) diverge for
r → ∞ for any potential that shows confinement, i.e. when
Vc(r) → ∞ for r → ∞. The field q(x) consequently cannot
represent the physical quark field. Since in the FBM the
conserved vector current is iqγµqF instead of iqγµq, the
physical quark field is identified with

ψ(t, r) =
√
F (r) q(t, r) . (7)

The current assumes then the usual form, iψγµψ, and the
field ψ(x) behaves as ψ → 0 for r → ∞.

The dynamical equation for the field ψ(x) can be easily
determined using the relation

iγµ(F∂µq +
1
2
q∂µF ) = iγµ(

√
F ∂µq + q ∂µ

√
F )

√
F

= iγµ∂µψ
√
F , (8)

from which we obtain, uppon substituting in (4)

iγµ∂µψ − [mq − Vc(r)]ψ = 0 . (9)

The Lagrangian density for the field ψ(x) can be also
easily determined. Starting from

∂µψ = ∂µ(
√
Fq) =

√
F ∂µq + nµ

G

2
√
F
q . (10)

we obtain

i

2
ψγµ∂µψ =

i

2
(qγµ∂µq)F +

i

4
(qnµγ

µq)G , (11)
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which allow us to rewrite the Lagrangian density (1) in
terms the field ψ(x),

LFBM =
i

2
[ψγµ∂µψ − ∂µψγ

µψ] −BF (r)

− [mq + Vc(r)]ψψ . (12)

Thus, (9) and (12) equivalently define a bag model with
a fuzzy surface. The FBM is very similar to relativistic
potential models. Appart from the term B F (r), the dif-
ference lies in that the scalar potential Vc(r) is related
by (6) to a suppression function F (r), which in turn is
constrained by the requirement (2).

2.2 Suppression function of the quarks – I

The functions F (r) and G(r) are to be chosen so that the
potential Vc(r) be simple. They also have to satisfy the
distributional limits (2).

The supression function as defined by Nogami et al.
[12], reads as

FNog.(r) =
{

1 , r < R
exp(− λ

n+1 (r −R)n+1) , r ≥ R ; (13)

the corresponding GNog.(r) can be calculated through (3),
and the potential Vc,Nog.(r) is given by (6) as

Vc,Nog. =
{

0 , r < R
1
2λ(r −R)n , r ≥ R .

(14)

For R = 0 fm and n = 2, Vc,Nog.(r) reduces to the har-
monic oscilator potential.

Unfortunately, the functions F and G so defined do
not have the distributional limit (2), but rather satisfy
the limits

FNog.(r) −→
n→∞ θ(R+ 1 − r)

GNog.(r) −→
n→∞ δ(R+ 1 − r) . (15)

We can see this by analysing the behaviour of FNog.(r)
in various intervals of the r-axis. In the region r ≤ R,
FNog.(r) is defined to be 1 for all values of n. For r > R,
one should get FNog.(r) → 0, but, according to definition
(13), one obtains in the interval R < r < R+1, since r−R
is positive and less than 1,

FNog.(r) = exp
(

−λ(r −R)n+1

n+ 1

)
−→

n→∞e
0 = 1 (16)

for r = R+ 1 we have

FNog.(r) = exp
(

− λ

n+ 1

)
−→

n→∞e
0 = 1 (17)

and finally, for r > R+ 1 we have

FNog.(r) = exp
(

−λ(r −R)n+1

n+ 1

)
−→

n→∞e
−∞ = 0 (18)
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Fig. 1. Suppression function FNog.(r) for n = 2 (full line) and
n = 20 (dashed line) and R = 0fm and λ = 3fm−3

The behaviour of FNog.(r) is then clear, and is also illus-
trated in Fig. 1.

The behaviour of GNog.(r) is also easy to analyse. We
first observe that the total area of GNog.(r) is 1. Integrat-
ing (3) from 0 to R+ 1 we obtain

∫ R+1

0
dr GNog.(r) = FNog.(0) − FNog.(R+ 1) −→

n→∞0 ,(19)

and integrating from R + 1 to R + 1 + ε, with ε > 0, we
obtain∫ R+1+ε

R+1
dr GNog.(r) = FNog.(R+ 1) − FNog.(R+ 1 + ε)

−→
n→∞ 1 . (20)

So we see that GNog.(r) is concentrated around r = R+1,
as can also be seen in Fig. 2, and equations (15) are proved.

2.3 Suppression function of the quarks – II

In the following we define functions F (r) and G(r) with
the correct distributional behavior (2). It can be shown
that the MIT bag model Lagrangian can then be recovered
from the FBM.

The correct distributional limit (2) can be achieved
with a slight modification of definition (13) for F (r) and
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Fig. 2. Surface function GNog.(r) for n = 2 (full line) and
n = 20 (dashed line) for R = 0fm and λ = 3fm−3

of the corresponding one for G(r). Introducing a constant
C which depends on n and λ, we define:

F (r) =

{
1 , r < R

(n+ 1) exp
[
− λ

n+1 (r −R+ C)n+1
]
, r ≥ R

(21)

G(r) is given by (3) and the constant C is determined so
that F (r) is continuous, that is F (R) = 1. We explicitly
find (assuming n > 0)

C =
[(

n+ 1
λ

)
ln(n+ 1)

] 1
n+1

. (22)

It is easy to show that the redefinition of F (r) and G(r)
cures the inconsistencies. We see that for n → ∞, C ap-
proaches 1 from the right, that is, C > 1 and C → 1. This
means that for r > R, we allways have r−R+C > 1, and
thus

F (r) = (n+1) exp
(
−λ(r−R+C)n+1

n+ 1

)
−→

n→∞e
−∞ =0

(23)

It is clear then that the behaviour of F (r) is given by (2).

The behaviour from G(r) follows from the behaviour
of F (r):∫ R+ε

R−ε

dr G(r) = F (R− ε) − F (R+ ε) −→
n→∞1 − 0 = 1.(24)

So the behaviour of G(r) is also given by (2).
In addition, the confining potential is given by

Vc =
G

2F
=
{

0 , r < R
1
2λ(r −R+ C)n , r ≥ R

(25)

and behaves like an infinite potential well in the limit n →
∞.

2.4 Wavefunctions for quarks in the FBM (B = 0)

As we already mentioned, the FBM is very similar to rel-
ativistic potential models. For a given form of Vc(r), and
by setting the bag constant B = 0, the treatment is in
fact identical. In order to reproduce the masses of various
hadrons, a constant scalar term V0/2 and a vector poten-
tial Wµ(r) have to be added to the Lagrangian density
(12), which then reads as

LFBM =
i

2
[ψγµ∂µψ − ∂µψγ

µψ]

− ψ[mq + V0/2 + Vc(r) + γµWµ]ψ . (26)

The vector potential is conveniently defined as W0 = V0/2
+Vc(r) and Wi = 0. In that way the quarks interact with
a potential of the type

(1 + γ0)
[
V0

2
+ Vc(r)

]
≡ (1 + γ0)U(r) . (27)

Setting R = C and n = 2, we recover the harmonic oscil-
lator potential

U(r) =
V0

2
+
λ

2
r2 . (28)

The Dirac equation for the quarks is then

iγµ∂µψ −
[
mq + (1 + γ0)

(
V0

2
+ Vc(r)

)]
ψ = 0 . (29)

A potential of the form (27) was first considered by Fer-
reira and Zaguri [13] and subsequently studied intensively
by several authors [14–16]. In the present work we mainly
focus on the static properties of hadrons and on effects
due to the pion field. To compare our results with other
calculations we use in this section the parameters found in
[16] whose values are E = 611.842MeV , mq = 78.75MeV ,
V0 = −137.5MeV and λ = 2.273fm−3. The ground state
quark wavefunctions are given by

g(r) =
Nq

r0
e−r2/2r2

0 (30)

f(r) = − Nq r

r30(E +mq)
e−r2/2r2

0 , (31)

where Nq is the normalization constant, and

r0 = [λ(E +mq)]−
1
4 . (32)
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2.4.1 Axial form factor

The axial form factor for the nucleon, defined via its quark
content, is given in the Breit reference frame for k2 <<
4M2

N , by [17,16]

〈N |σN τN |N〉GA(k2) =∫
d3r eik·r 〈N |

∑
q

ψqγγ5τqψq|N〉 . (33)

Above, the matrices σN and τN and σq e τq act on the
nucleon and the quark degrees of freedom, respectively.
The sum over quarks is carried out over all degrees of
freedom (color and flavor indices are here suppressed for
convenience). For the nucleon, with all the quarks in the
ground state, the integral can be solved analytically and
yields for the axial form factor

GA(k2) =
5(5E + 7mq + V0)
9(3E +mq − V0)

e−k2r2
0/4

[
1 − 3

2
k2

(E +mq)(5E + 7mq + V0)

]
. (34)

For k2 = 0, we obtain for the axial charge

gA = GA(0) =
5(5E + 7mq + V0)
9(3E +mq − V0)

= 0.944 ; (35)

including center of mass corrections into the calculation
of gA [16], this value increases to

gA = 1.182 , (36)

and the experimental value of gA [18] is

gA = 1.2573 ± 0.0028 . (37)

2.5 Wavefunctions for quarks in the FBM (B 6= 0)

Taking B 6= 0, we consider again a potential of the type
(1 + γ0)V (r), and the following Lagrangian density holds

LFBM =
i

2
[ψγµ∂µψ − ∂µψγ

µψ]

− ψ[mq + (1 + γ0)V (r)]ψ −BF (r) , (38)

with V (r) now given by V (r) = 1
2V0 +W (r) and

W (r) =
{

0 , r < R
1
2λ [r −R+ C]2 − λ

2 C
2 , r ≥ R

, (39)

where the last term in (39) makes the potential V (r) con-
tinuous and C is given by (22). The Dirac equation is

iγµ∂µψ −mqψ − (1 + γ0)V (r)ψ = 0 ; (40)

and the parameters of the model are mq, B, V0, λ and n.

2.5.1 Solutions

Using the definition

ψ(r) =

(
gk(r)Yjz

jl (r̂)
ifk(r)Yjz

jl′(r̂)

)
, (41)

for the quark spinor, the upper component can be written
in the form

g(r) =
u(r)
r

, (42)

and lower component is, for the ground state (l = 0), given
by

f(r) =
1

(E +mq)
dg

dr
. (43)

For u(r) we obtain the differential equation (l = 0)

d2u

dr2
+ [a− 2(E +mq)W (r)]u = 0 . (44)

where a = (E +mq)(E −mq − V0) . In the region r < R
the solution is

u(r) = N1 sin(
√
ar) . (45)

For r > R, the solution is

u(r) = N2 e
−x2/2

1F1

(
1 − br20

4
,
1
2
, x2
)

+ N3 x e
−x2/2

1F1

(
3 − br20

4
,
3
2
, x2
)

(46)

with the definitions

b = a+ λC2(E +mq) (47)
x = (r −R+ C)/r0 . (48)

The continuity of g(r) and f(r) at r = R determines the
ratios N2/N1 and N3/N1. The solution (46) diverges un-
less

N3

N2
= −2

Γ ((3 − br20)/4)
Γ ((1 − br20)/4)

, (49)

as can be checked by the asymptotic expantion of (46).
The eigenvalue condition is then

√
a cot(

√
aR)+

C

r0
=
{
C(1 − br20)

r0
1F1

(
5 − br20

4
,
3
2
,
C2

r20

)

+
C2(3 − br20)

3r20

N3

N2
1F1

(
7 − br20

4
,
5
2
,
C2

r20

)

+
N3

N2
1F1

(
3 − br20

4
,
3
2
,
C2

r20

)}/(
u(R)
N2

eC2/2r2
0

)
(50)
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2.5.2 Nucleon mass

Dropping the Dirac-sea contributions, i.e. neglecting the
sum over states with negative energy, we obtain for the
expectation value of the mass operator M , in the state
where N quarks occupy the state with energy Eκ,

M = < N|M̂ |N >

= NEk +
4π
3
BR3 + 4πB

∫ ∞

R

dr r2F (r) . (51)

A relation between the bag constant B and the equi-
librium radius of the bag R can be obtained by minimizing
M with respect to R,

dM

dR
= N dEκ

dR
+ 4πBR2 [1 − F (R)] = 0 , (52)

We then obtain

B =
−N

4πR2[1 − F (R)]
dEκ

dR
. (53)

The nucleon mass can be fitted, for example with
mq = 150.7MeV , V0 = −180MeV , λ = 0.3fm−3, B =
20MeV/fm3 and R = 0.79. A more extensive fit, taking
into account renormalization effects due to the pion cloud,
is in progress.

3 Modified Fuzzy Bag Model (MFBM)

In this section we present the modified fuzzy bag model
(MFBM), whose main new feature is a smooth supression
of the pion field inside the bag by means of a scalar poten-
tial, in such a form that chiral symmetry is still preserved.

3.1 Inclusion or exclusion of pions in the bag

Chiral invariance is a stringent restriction to the form
of the pion-quark interaction. However, it does not tell
whether to include or exclude the pion field from the bag’s
interior. In the following two subsections we present argu-
ments with respect to inclusion or exclusion of the pions
from the interior of the bag and also discuss this question
in the context of the MFBM.

3.1.1 Pions inside the bag

In the work of A. Chodos e C. B. Thorn [19], in which
a phenomenological pion field was introduced in the MIT
bag model, the question of the inclusion or exclusion of
the pion field in the interior of the bag is discussed in de-
tail. In the pure bag model, which contains only quark
fields, the strong interaction between hadron bags was ex-
plained by introducing a bag fission mechanism analogous
to the fission of strings [1] (in the original concept, the
bag is understood as a 3 + 1 dimensional string). In the
theory of strings there exists an alternative method for

the calculation of scattering amplitudes: the emission of
a string can be mocked up in the tree approximation by
an elementary field which locally couples to the surface of
the string. Guided by this model, A. Chodos and C. B.
Thorn proposed the inclusion of a phenomenological pion
field which is noninteracting inside the bag and couples to
the quarks only at the (sharp) surface of the bag.

3.1.2 Pions excluded from the bag

There are strong arguments leading to the conclusion that
the phenomenological pion field has to be excluded from
the interior of the bag. The basic motivation has its origin
in the vacuum structure of QCD and in the identification
of the pion as the Goldstone boson of the theory. The key
argument is the implementation of chiral symmetry in the
Goldstone mode, originally studied by Y. Nambu and G.
Jona-Lasinio [20] and extended later by T. D. Lee e G.
C. Wick [21] with the Goldstone mode implemented in a
defined region of space and the Wigner mode in the com-
plementary region. With this concept C. G. Callan, R. F.
Dashen and D. J. Gross [22] studied the vacuum of QCD
in a semiphenomenological way and concluded that the in-
teraction of the vacuum with a single quark has perturba-
tive character in the vicinity of the quark (Wigner mode),
and that beyond a certain distance the vacuum sponta-
neuously breaks chiral symmetry (Goldstone mode). Fol-
lowing these arguments, the pion field, which is identified
with the Goldstone boson, should exist only in the bag’s
exterior, i.e. in the region where chiral symmetry is broken
(c.f.[23,24]).

3.1.3 Pions gently suppressed in the interior of the bag

In the phenomenological hadron models found in the liter-
ature, the concept of a two-phase vacuum can only be im-
plemented by multiplying the whole pion field Lagrangian
density by θ(r − R). This implies that the hadron must
have a definite, sharp surface, as in the MIT bag model.
But, as was pointed out in the Introduction, the sharp sur-
face of the bag gives rise to unphysical features, like the
divergence of the self-energy of the nucleon. It would then
be desirable to find another mechanism for excluding the
pion field from the interior of the bag. No such attempts
are found in the literature, and the reason is very sim-
ple: the exclusion must be realized by means of a scalar
potential, but scalar potentials break chiral symmetry.

In this work, we present an alternative mechanism. It
is similar to the suppression of quarks in the fuzzy bag
model. Through the suppression mechanism, the pion field
behaves differently in different regions of space: in the
bag’s exterior the pion field is free, in the surface of the
bag the pion field decreases smoothly, and in the interior
of the bag the pion field is zero. These three regions can be
set in correspondence to the vacuum structure of QCD, re-
spectivelly the nonperturbative vacuum (“exterior of the
bag”), where chiral symmetry is spontaneously broken and
the Golstone bosons (pions) live, the perturbative vacuum
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(“interior of the bag”), where chiral symmetry is realized
in the Wigner mode, and a transition region between the
two vacua (“surface”). We emphazise that the concepts
developed in this chapter are indeed of more general char-
acter and can be extended to other relativistic bag and
potential models.

3.2 The formalism of the MFBM

3.2.1 Suppression of the pion field

In this section we introduce the contribution of the pion
field in the MFBM, together with the structure of the
Lagrangian density and the field equations. The starting
point is the Lagrangian density for the excluded pion field
in the MIT bag model,

L =
1
2
[
∂µφ · ∂µφ−m2

πφ
2] θ(r −R) . (54)

Replacing θ(r − R) by a suppression function Fπ(r), we
obtain

L =
1
2
[
∂µφ · ∂µφ−m2

πφ
2] Fπ(r) . (55)

Similarly to (2), the function Fπ(r) depends on a param-
eter nπ in such a way that

Fπ(r) −→
nπ→∞ θ(r −R) . (56)

From the Lagrangian density (55) we obtain the dy-
namical equation for the field φ(x),(

∂µ∂
µφ+m2

πφ
)
Fπ(r) + ∂µFπ(r) ∂µφ = 0 . (57)

3.2.2 Redefinition of the pion field

The spatial part of the isovector current of the suppressed
pion field is

j0(x) = ε3ij Fπ(r)φi ∂
0φj , (58)

and by defining the physical pion field through the relation

π(x) =
√
Fπ(r)φ(x) , (59)

we recognize that it can be written in the usual form,

j0(x) = ε3ij πi ∂
0πj . (60)

3.2.3 Dynamical equation and Lagrangian density for the
pion field

Applying the transformation (59) to (57), we get the ex-
pression[

∂µ∂
µ π√

Fπ

+m2
π

π√
Fπ

]
Fπ + ∂µFπ ∂

µ π√
Fπ

= 0 . (61)

Upon acting with the derivatives, combining various terms
and dividing by

√
Fπ, we obtain the dynamical equation

for the pion field in the MFBM,

∂µ∂
µπ +

[
m2

π + vπ(r)
]
π = 0 , (62)

where the scalar potential vπ(r) is defined as:

vπ(r) ≡ 1
4F 2

π

∂µFπ ∂
µFπ − 1

2Fπ
∂µ∂

µFπ

=
1

2Fπ

d2Fπ

dr2
−
(

1
2Fπ

dFπ

dr

)2

+
1
rFπ

dFπ

dr
. (63)

A Lagrangian density for the pion field can be easily ob-
tained from the Lagrangian density (55). Using the iden-
tity

(∂µφ · ∂µφ)Fπ = Fπ ∂µ

(
π√
Fπ

)
· ∂µ

(
π√
Fπ

)

= ∂µπ · ∂µπ − 1
Fπ

π · ∂µπ ∂µFπ

+
1

4F 2
π

π2 ∂µFπ ∂
µFπ , (64)

we find

L =
1
2
∂µπ · ∂µπ − 1

2Fπ
π · ∂µπ ∂µFπ

+
1

8F 2
π

π2 ∂µFπ ∂
µFπ − 1

2
m2

π π
2 , (65)

which yields (62) via the Euler-Lagrange equations.

3.2.4 Chiral invariance

For the free massless pion field the (infinitesimal) chiral
transformation is given by

φ′(x) = φ(x) + fπθ , (66)

and leaves invariant both the Lagrangian density

L =
1
2
∂µφ · ∂µφ , (67)

as well as the massless form of (55)

L =
1
2
∂µφ · ∂µφFπ(r) . (68)

The chiral transformation for the suppressed pion field
π(x) is, as a consequence of (59), given by

π′(x) = π(x) + fπ

√
Fπ(r) θ , (69)

and leaves the Lagrangian density (65) invariant. We show
this explicitly by calculating the variation of the Lagran-
gian density (65), under the chiral transformation (69).
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Setting mπ = 0, we get:

δL =
∂L
∂π

· δπ +
∂L

∂(∂µπ)
· δ(∂µπ) ,

=
(

− 1
2Fπ

∂µFπ ∂
µπ +

1
4F 2

π

π ∂µFπ ∂
µFπ

)
· δπ

+
(
∂µπ − 1

2Fπ
π ∂µFπ

)
· δ(∂µπ) . (70)

The variation of the field π(x) is determined from (69) as
δπ = fπ

√
Fπ θ. Using the relation δ(∂µπ) = ∂µ(δπ), we

obtain

δL = fπ

√
Fπ

(
∂µπ − 1

2Fπ
π ∂µFπ

)
· ∂µθ . (71)

Finally, using the Gell-Man Levy theorem, we determine
the symmetry current related to the transformation and
its divergence:

 µ
A,π(x) =

∂(δL)
∂(∂µθ)

= fπ

√
Fπ∂

µπ − fππ∂
µ
√
Fπ

(72)

∂µ
µ
A,π(x) =

∂(δL)
∂θ

= 0 . (73)

As expected, the axial current is equal to  µ
A,π(x) =

fπ Fπ ∂
µφ. It is equal to the axial current for the field

φ(x), and is conserved.

3.2.5 A simpler Lagrangian density

In view of the field equation (62), the Lagrangian density
(65) seems to be too complicated. In fact, it can also be
written as

L =
1
2
∂µπ · ∂µπ − 1

2
[
m2

π + vπ(r)
]
π2 (74)

plus a total divergence term,

−∂µ

(
π2

4Fπ
∂µFπ

)
, (75)

which can be integrated out. It can also be checked that
(74) is invariant under the chiral transformation (69) only
up to a total derivative term. Of course, the current (72)
stays conserved. From now on we adopt (74) as the La-
grangian density for the suppressed pion field.

3.2.6 Interaction Lagrangian density

The Lagrangian density of the MFBM in the quark sector
is identical to the one of the FBM (26). In the pionic
sector, it is given by (74). The interaction term is obtained
using the interaction piece of the nonlinear sigma model,
which in our case is

LI = − [V0/2 + Vc(r)]ψ
(
i

fπ
γ5τ · φ

)
ψ , (76)

Using then the transformation (59), and the definition (28)
for U(r) we obtain the interaction Lagrangian density of
the MFBM

LI = −U(r)ψ

(
i

fπ

√
Fπ(r)

γ5τ · π
)
ψ . (77)

Putting all pieces together, the complete Lagrangian den-
sity finally is given by

LMFBM =
i

2
[
ψγµ∂µψ − ∂µψγ

µψ
]− ψγµWµψ −BF (r)

+
1
2
∂µπ · ∂µπ − 1

2
[
m2

π + vπ(r)
]
π2

−U(r)ψ

(
1 +

i

fπ

√
Fπ(r)

γ5τ · π
)
ψ . (78)

From the Euler-Lagrange equations we obtain the dy-
namical equations for ψ(x) and π(x):

iγµ∂µψ − γµWµψ − U(r)

(
1 +

iγ5τ · π
fπ

√
Fπ(r)

)
ψ = 0 (79)

∂µ∂
µπ +

(
m2

π + vπ(r)
)
π = − iU(r)ψ γ5 τ ψ

fπ

√
Fπ(r)

. (80)

3.3 Wavefunction of the pion

3.3.1 The suppression function Fπ(r)

In this section we present different parametrizations of
the suppression function Fπ(r) and obtain the (numerical)
solutions of the pion field equation.

Besides (56), the suppression function Fπ(r) should
satisfy the following conditions:

(i) – The values of R in (2) and (56) have to be identi-
cal, so that in the limits n → ∞ and nπ → ∞, the quark
field is confined in a volume of radius R, and the pion field
is excluded from a volume of the same radius.

(ii) – The suppression function Fπ(r) has to be defined
in such a way that the pion field is free in the exterior of
the bag, suppressed in the surface of the bag and zero
inside the bag.

(iii) – The region of suppression of the pion field has
to coincide with the region where vπ(r) is significantly
different from zero.

At a first glance condition (iii) looks surprising; from
conditions (i) and (ii) it seems that the third condition
is automatically satisfied. It is however easy to show the
opposite. Assume,

Fπ(r) = e−a(R
r )nπ

, (81)

where a > 0. Then Fπ(r) generates the potential

vπ(r) =
a2

4
n2

π R
2nπ

r2nπ+2 − a

2
nπ(nπ − 1)Rnπ

rnπ+2 , (82)
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which is large only close to the origin, where Fπ(r) is prac-
tically zero. Thus definition (81) is not appropriate.

As the general conditions (i) – (iii) constrain Fπ(r)
only qualitatively, it is tempting to choose a parametriza-
tion such that the differential equation for π(x) has an an-
alytical solution. However, in all cases the corresponding
vπ(r) are not suitable to parametrize even qualitatively
the physics at the bag surface.

With the findings above, we have to study numerical
solutions for the pion field. In this case a possible form for
the suppression function is

Fπ(r) =

{
0 , r <R−R0

1− exp
[

−λπ

nπ+1 (r −R+R0)nπ+1
]
, r ≥R−R0

(83)

with R0 = 1fm. This definition satisfies conditions (i)-(iii)
and in addition preserves the similarity to the suppression
function of the quarks (21). For simplicity, we set R = R0
and obtain

Fπ(r) = 1 − exp
(

− λπ

nπ + 1
rnπ+1

)
, (84)

and, from the second equation in (63),

vπ(r)=λπr
nπ

[
nπ

2r
+

1
r
− λπ

2
rnπ

][
exp
(
λπr

nπ+1

nπ+1

)
− 1
]−1

− λ2
πr

2nπ

4

[
exp

(
λπr

nπ+1

nπ+1

)
− 1
]−2

. (85)

The typical behavior of Fπ(r) and vπ(r) for specific values
of nπ and λπ is shown in Fig. 3.

3.3.2 Solution of the homogeneous differential equation

In the MFBM, even if the source term in the dynamical
equation for the pion field (80) is set equal to zero, the
pion field is not free because of the potential vπ(r). The
homogeneous differential equation for the pion field is

∂µ∂
µπ +

(
m2

π + vπ(r)
)
π = 0 . (86)

The solution of (86) is separable in the form

π(t, r) = α̂ e−i ωk t Ylm(θ, φ)
y(r)
r

, (87)

where α̂ is a unit vector in isospin space, ω2
k = k2 +m2

π,
and Ylm(θ, φ) is a spherical harmonic. For our purposes
it is sufficient to know the solution for orbital angular
momentum l = 1. The equation for y(r) is then given by

y′′(r) +
(
k2 − 2

r2
− vπ(r)

)
y(r) = 0 . (88)

In Fig. 4 we show the radial dependence of the effective
potential Veff = 2/r2 + vπ(r).

0.0 0.4 0.8 1.2 1.6
r (fm)

-1.6
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-0.8

-0.4

0.0

0.4

0.8

1.2

1.8

Fig. 3. Radial dependence of Fπ(r) (dashed line) and vπ(r)
(full line), in units of fm−1, for nπ = 2.12 and λπ = 7.56

The asymptotic solutions of (88) are easily derived. In
the limit of r going to infinity, the potential vπ(r) tends
rapidly to zero, and the solution tends to

y(r) −→
r→∞A

√
2
π

cos(kr + δ) , (89)

where A and δ are constants. Close to the origin, the po-
tential behaves like

vπ(r) −→
r→0

(nπ + 1) (nπ + 3)
4

1
r2

. (90)

Setting

l′ (l′ + 1) = 2 +
(nπ + 1) (nπ + 3)

4
, (91)

the solution is

y(r) −→
r→0

B k r jl′(kr) , (92)

where B is a constant. The results (89) and (92) were used
for checking the numerical solution. As a final step we have
to orthonormalize the radial solutions, which means that
they should satisfy∫ ∞

0
dr yk1(r) yk2(r) = δ(k1 − k2) . (93)
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4.0

6.0

Fig. 4. Radial dependence of Veff = 2/r2 + vπ(r) (full line)
and 2/r2 (dashed line), for nπ = 2.12 and λπ = 7.56

Using the differential equation (88), we obtain

(k2
1 − k2

2) yk1 yk2 = yk1 y
′′
k2

− yk2 y
′′
k1
, (94)

which yields for the normalization integral

∫ ∞

0
dr yk1(r) yk2(r) =

∫ ∞

0
dr
yk1(r) y

′′
k2

(r) − yk2(r) y
′′
k1

(r)
(k2

1 − k2
2)

=
yk1(r) y

′
k2

(r) − yk2(r) y
′
k1

(r)
(k2

1 − k2
2)

∣∣∣∣
∞

0
(95)

At the origin, the function y(r) is zero; and for large values
of r the asymptotic expression for y and y′ can be used.
The normalization integral is then equal to

lim
r→∞

A2

π

[
sin(k1r − k2r)

k1 − k2
− sin(k1r + k2r)

k1 + k2

]
=

A2 [δ(k1 − k2) − δ(k1 + k2)] , (96)

where, as k > 0, only the first term contributes. From (96)
we see that A = 1. In Fig. 5, we present the curve of y(r)/r
for k = mπ = 0.70fm−1, nπ = 2.12 and λπ = 7.56.
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Fig. 5. Homogeneous solution y(r)/r of the pion field for the
parameters nπ = 2.12 and λπ = 7.56

3.3.3 Particular solution

We now study (80) including the source term. For a sta-
tionary pion field it simplifies to

∇2π−(m2
π + vπ(r)

)
π =

i U(r)
fπ

√
Fπ(r)

∑
q

ψq γ5 τq ψq

(97)

It is convenient to represent the π(r) in the hedgehog form
[15]

π(r) =
∑

q

σq · r̂ τq h(r) . (98)

Using the identity [15]

∇π = ∇ [σq · rh(r)]
= h′(r) r̂ (σq · r) +

h(r)
r

[σq − r̂ (σq · r)] , (99)

the Laplacian can be written as

∇2π =
(
h′′ +

2h′

r
− 2h
r2

)
(σq · r) . (100)

In the right hand side of (97) we substitute the quark fields

ψ(r) =

(
gκ(r)

i(σq · r̂)fκ(r)

)
Ys

1
2 0(r̂) , (101)
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Fig. 6. Inhomogeneous solution h(r) of the pion field for the
parameters nπ = 2.12 and λπ = 7.56

to obtain

ψqγ5ψq =
i

2π
g(r) f(r)

[
Ys

1
2 0(r̂)

]†
(σq · r̂) Ys

1
2 0(r̂) .

(102)

Projecting (97) onto the states of the nucleon and using
(100) and (102), we obtain the differential equation for the
radial part of the pion field, h(r),

h′′+
2h′

r
−
(

2
r2

+m2
π + vπ(r)

)
h=

−U(r)g(r)f(r)
2πfπ

√
Fπ(r)

(103)

A numerical solution for h(r) is shown in Fig. 6.

3.4 The πNN -vertex in the MFBM

As a first application of the MFBM we study the form
factor of the pion nucleon vertex GπNN(k2). The pion-
nucleon form factor in the MFBM is given by [25]

GπNN(k2) =
−10

√
2πMN

3fπk2

∫
drr2

U(r)√
Fπ(r)

g(r)f(r)
y(r)
r

(104)

If we make Fπ(r) = 1, then we get vπ(r) = 0 and yk(r)
tends to the normalized radial wavefunction for the pion

field yk(r) →
√

2
π k r j1(kr). The usual form of GπNN(k2)

is then recovered

GπNN(k2) → −20MN

3 fπ k

∫
dr r2 U(r) g(r) f(r) j1(kr) (105)

The experimental value of the coupling constant of the
pion nucleon interaction g2

πNN/4π = 14.1 is calculated
through gπNN = GπNN(m2

π). In the MFBM it can be fitted
exactly, just by choosing adequate values for nπ and λπ. In
the present work we set the value nπ = 2.12, and gπNN is
then exactly given when λπ = 7.56. Comparing the value
of gπNN obtained with the MFBM

gπNN = 13.31 , (106)

with the value calculated in [16], gπNN = 11.16, it becomes
apparent that, due to the fuzzy surface, the correction for
gπNN is approximately 16 %.

3.5 The axial charge of the nucleon in the MFBM

The pionic contribution for the axial charge is defined by

〈N |σi
N

τN

2
|N〉 gA,π = 〈N |

∫
d3r  i

A,π|N〉 , (107)

where the iso-vector axial current carried by the pions is
given by (72). Integrating the right hand side of (107) by
parts and noting that π → 0 when r → ∞ and that π → 0
and Fπ(r) → 0 when r → 0, we obtain

〈N |σi
N

τN

2
|N〉 gA,π = −2fπ〈N |

∫
d3r π∂i

√
Fπ|N〉

(108)

Substituting the particular solution for the pion field (98)
in the above equation, we see that the angular integral,
given by ∫

dθ dφ sin(θ)(σq · r̂)r̂i (109)

depends on the space direction i. For i = 1 and i = 2 (x
and y directions), we have

4π
3
σi

N (110)

and for i = 3 (z direction) we have

2π
3
σi

N (111)

As a result, the pionic contribution to the axial charge
is not isotropic [25]. Denoting by gx

A,π, gy
A,π and gz

A,π the
contributions in different directions, with our values of nπ

and λπ we get

gx
A,π = gy

A,π = −0.09534

gz
A,π = −0.04767 . (112)
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So, in the MFBM the pion contribution to the axial
charge does not vanish. This is a peculiarity of the MFBM.
In most models, the axial current of the pion is given by

 µ
A,π(r) = fπ ∂

µπ , (113)

and it has been shown [15], that if in addition the pion field
is continuous, then the pionic contribution to gA is zero.
It has also been observed [26], that if the axial current is
the one from the linear sigma model

 µ
A,π(r) = fπ (σ ∂µφ− φ∂µσ) , (114)

then the pionic contribution to the axial current does not
vanish. In the MFBM the axial current (72) is similar to
(114), and the pionic contribution to gA is nonzero, too.
Thus we would like to emphasize that a pionic axial cur-
rent of the type (114) induces a nonvanishing and orien-
tation dependent contribution to gA. Up to now there are
no comparable results, which could experimentally con-
firm this peculiarity. In the limit q → 0, gA,π becomes
isotropic, but still different from zero.

3.5.1 Effect of the bag surface on gA

Using a diferent parametrization for the volume filter dis-
tribution

Fπ(r) =




0 , r < R0
(r −R0)/(R1 −R0) , R0 ≤ r < R1
1 , r ≥ R1

(115)

we have analyzed the asymptotic behaviour of the ax-
ial charge. This definition has the advantage of simplic-
ity and, moreover, it parametrizes the different regions of
the bag in a very intuitive way: in the region for which
r < R0 we have the interior of the bag, where the pion
fields are supposed to be zero; in the region R0 ≤ r < R1
we have the surface of the bag (vπ is different from zero
in this region) and, for r ≥ R1 we have the exterior of the
bag, where the pions are supposed to be free. In Fig. 7 we
have plotted the components gA

xy and gA
z for different val-

ues of R0 and R1. The results indicate that the presence
of the surface increases the difference of the contributions
associated to different orientations.

4 Conclusions

In the present work we proposed a model (MFBM) in
which the pion field is excluded from the bag interior.
The suppression of the pion field is effectively realized by
means of a scalar potential. Scalar potentials usually vio-
late chiral symmetry, and this is why no bag models with
a scalar suppression of the pion field are found in the liter-
ature. In the MFBM, the chiral transformation of the pion
field is “modulated” by the suppression function, and as
a result chiral symmetry is preserved.

Through the suppression mechanism, the pion field be-
haves differently in different regions of space: in the bag’s

0.0 2.0 4.0 6.0 8.0
0.00

0.31

0.63

0.94

1.25

Fig. 7. Behaviour of gxy
A,π (curves above) and gz

A,π (curves
below) for R0 = 0.1fm ( — ), R0 = 0.5fm ( – – ) and R0 =
1.0fm ( - - - - ) as a function of R1

exterior the pion field is free, in the surface of the bag the
pion field decreases smoothly, and in the interior of the
bag the pion field is zero. These three regions can be set
in correspondence to the vacuum structure of QCD, re-
spectivelly the nonperturbative vacuum (”exterior of the
bag”), where chiral symmetry is spontaneously broken and
the Golstone bosons (pions) live, the perturbative vacuum
(”interior of the bag”), where chiral symmetry is realized
in the Wigner mode, and a transition region between the
two vacua (”surface”).

In the MFBM the pion-nucleon coupling constant can
be fitted exactly. Also, the pionic contribution to the ax-
ial charge of the nucleon does not vanish and is further-
more non-isotropic. The flexibility in the parameters nπ

and λπ of the suppression function Fπ(r), would easily
allow to fit the experimental values of gπNN and gA. In
the actual stage of the MFBM it is too early to perform
such a fitting, because of renormalization effects due to
the pion-quark interaction, which so far were not incorpo-
rated in the model. Work on the renormalization of the
MFBM and a detailed test of its properties is presently in
progress. This will hopefully provide hints on the proper
form of the suppression function of the pion and maybe
also an interpretation of it in terms of more fundamental
quantities from QCD. The results will be presented in a
subsequent paper.
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